Phase Equilibria in the α -Ti-Al-Si Region of the Ti-Si-Al System

Marina Bulanova, Ludmila Tretyachenko, Marina Golovkova, and Konstantin Meleshevich

(Submitted 3 April 2003; in revised form 27 December 2003)

An experimental investigation of the phase relations in the titanium (Ti)-aluminum (Al)-silicon (Si) system was undertaken by differential thermal analysis, x-ray diffraction, metallography, and microprobe analysis. The present measurements when combined with those from an earlier investigation at this laboratory provide data for 56 alloy compositions in the Ti-Al-Si system. The combined results allowed the construction of a solidus projection, a melting diagram including both solidus and liquidus, partial isothermal sections at 1270 °C and 1250 °C, three isopleths with a constant percentage of one or another component, and a reaction scheme.

1. Introduction

Industrial interest in multicomponent high-temperature alloys was the motivation for undertaking the present investigation of the phase relations in the titanium (Ti)-silicon (Si)-aluminum (Al) ternary system. Al increases the $\alpha \leftrightarrow \beta$ transformation temperature of Ti. Si improves hightemperature properties (i.e., strength, creep, and corrosion resistance) of both Ti alloys and Ti-Al alloys. Therefore, knowledge of the phase diagram of this ternary system is useful.

Despite the fact that the Ti-Si-Al system was studied in the past, the phase diagram in the whole concentration and temperature range has not previously been constructed. Most of the data available concern the Ti-corner of the system. Information on phase equilibria at other concentrations is scarce. In addition, the available data are often contradictory and do not correspond to the Ti-Al binary system that is accepted today.

A ternary compound (TC) in the vicinity of TiSi₂ with the structure of ZrSi₂ type has been reported by several previous investigations. In Nowotny and Huschka [1957Now] and Schob et al. [1962Sch] the Ti(Si,Al)₂ composition was ascribed to the phase. At 1250 °C, this phase was shown to correspond to the composition TiSi_{1,7-1,4}Al_{0,3-0,6}.

A TC was reported in Raman and Schubert [1965Ram] as Ti_2AlSi_3 (O phase). That report indicated that, after annealing at 1100 °C, an alloy 31Ti-50Si-19Al (in at.%) contained only the phase with the ZrSi₂ structure. In the as-cast state and after annealing at 700 °C, additional phases in the alloy were TiSi (FeB structure type) and Al, respectively. This shows that the O phase forms by peritectic reaction with participation of TiSi, and at 700 °C is in equilibrium with Al. At 16.5 at.% Al, compositions of Ti(Al_xSi_{1-x})₂ [1957Now, 1962Sch] and O phase [1965Ram] are identical. This implies that they are possibly the same phase resulting from an invariant equilibrium involving the phases L + TiSi + ~ + (Ti(Al_xSi_{1-x})₂ or O). According to Nowotny and Huschka [1957Now] and Schob et al. [1962Sch], the homogeneity region of the Ti(Al_xSi_{1-x})₂ phase is located along the isoconcentrate of Ti. However, other data [1965Ram] have indicated that the homogeneity range of the O phase follows an isoconcentrate of Si. In this respect, the data [1957Now, 1962Sch] seem to be preferable, because atomic size considerations favor the view that Al and Si atoms are more likely to substitute for each other than for Ti.

A suggestion was made by [1956Cot] that the hightemperature form of the $TiSi_2$ (ZrSi₂ type) is stabilized by Al additions. Then $Ti(Si,Al)_2$ might not be a TC, but a β -TiSi₂-based phase.

A TiAlSi₂ phase was reported by Kamei et al. [1968Kam] with the composition close to the abovementioned compounds. According to Orynbekov et al. [1984Ory], this phase is in equilibrium with Al at 500 °C. The existence of all of the above phases was rejected by Zakharov et al. [1988Zak], and the compound Ti₂Al₃Si₂ has been proposed as having a homogeneity range within 26.3-29.7 at.% Si and 29.5-30.5 at.% Ti. One more TC U (Ti₇Al₅Si₁₂) was reported in Raman and Schubert [1965Ram] with the structure of Zr_{1} -AlSi₁₊ [1963Sch]. All of the previous investigations show that the TC(s) coexist(s) with Si and/or Al. The existence of the Ti₂Al₃Si₂ compound [1988Zak] seems to be doubtful. As to the other phases, they probably form in a solid state. However, the question of the number of TCs, and of their compositions, crystal structures, and temperature stability is still open.

The Ti-Si-Al system is characterized by wide homogeneity regions of a few binary compounds. However, these homogeneity regions are not well-established, especially concerning Ti-Si-based compounds. Solidification of alloys along the Si-Al side of the ternary system was studied by Kamei et al. [1968Kam] and Zakharov et al. [1988Zak]. According to Kamei et al. [1968Kam], two invariant equilibria occur in this part of the system: peritectic L + TiAl₃ \leftrightarrow TiSi₂Al + Al; and eutectic L \leftrightarrow TiSi₂Al + Al + Si. The reaction temperatures were not given. Two peritectic equilibria were reported by [1988Zak]: L + TiAl₃ \leftrightarrow Ti₂Si₂Al₃ + Al (579 °C, invariant point at 12.6 at.% Si and 0.11 at.%

Marina Bulanova, Ludmila Tretyachenko, Marina Golovkova, and Konstantin Meleshevich, I.N. Frantsevich Institute for Problems of Materials Science, 3 Krzyzanovsky Str., Kiev, 03142, Ukraine. Contact e-mail: bulanova@ipms.kiev.ua.

Fig. 1 The related binary systems: (a) Ti-Al [1996Tre]

Ti), and $L + Ti_2Si_2Al_3 \leftrightarrow Al + Si$. Results from Kamei et al. [1968Kam] and Zakharov et al. [1988Zak] show that the TC should melt congruently, which does not agree with to the information discussed above.

Available isothermal sections at 1200 °C [1962Sch], 700 °C [1965Ram], and 20 °C [1968Kam] seem to be doubtful, as they do not involve all the phases of the boundary binaries and show no equilibria with their participation. Besides, the homogeneity ranges of most of Ti-Al phases do not correspond to the accepted Ti-Al binary phase diagram.

Assessment of the information previous to 1993 on the Ti-Si-Al system is presented in Perrot [1993Per].

The goal of the present article is to present our experimental data on phase equilibria in the α-Ti-TiAl₃-TiSi region of the Ti-Si-Al system. During our experimental research, several alloys were studied to clarify the phase relations in the TiSi-TiAl₃-Al-Si region. The accepted Ti-Al and Ti-Si binaries are shown in the Fig. 1. The Ti-Al system (Fig. 1a) is from the assessment by Tretyachenko et al. [1996Tre]. The Ti-Si phase diagram (Fig. 1b) is from the thermodynamic evaluation of Seifert et al. [1996Sei], which is mainly based on the experimental data of Svechnikov et al. [1970Sve]. It was suggested in Zavodyanny et al. [1997Zav] that Ti₅Si₄ and TiSi silicides undergo polymorphous transformations at unknown temperatures above 800 °C. [1970Sve] observed the thermal effects at 1815 °C for the sample of Ti₅Si₄ composition, which might be either the temperature of allotropic transformation of HfO₂ (used as a crucible material), or the temperature of $\alpha \leftrightarrow \beta$ transformation of Ti₅Si₄. As to the TiSi compound, the question of polymorphism is still unclear.

2. Experimental Procedure

The purity of starting materials was identified to be as follows: Ti 99.85%; Si 99.999%; and Al 99.995%. The alloys were melted in an arc-melting furnace with a nonconsumable tungsten electrode on a water-cooled copper (Cu) hearth in an Ar atmosphere purified by the melting of Ti. The buttons were turned over and remelted three times to ensure homogeneity. The weight losses were no more than 1.0%, so a chemical analysis was not carried out. The weight of the buttons was about 10-15 g. The samples were placed into Mo containers and were then annealed at various temperatures in an Ar atmosphere purified with Zr chips.

The alloys were studied in as-cast and annealed states using DTA, x-ray diffraction, metallography, and EPMA examinations.

A DTA examination was performed under helium in a high-temperature DTA analyzer with a W/W-Re thermocouple and an Mo reference. The heating/cooling rate was ~30 °C/min. Al₂O₃ and Sc₂O₃ crucibles were used. The temperatures were taken from the heating curves, except in a few cases when they were taken at cooling. The accuracy of temperature measurements was estimated to be $\pm 1\%$. Powder x-ray diffraction (XRD) was performed in Debye cameras (d = 57.3 mm) with CuK α -filtered radiation in an

Fig. 1 cont. The related binary systems: (b) Ti-Si [1970Sve, 1996Sei, 1997Bul, 1997Zav]

URS-2.0 diffractometer (Nauchpribor, Orel, Russia) or with monochromatic CuK α - and CoK α -radiation in a DRON-UM diffractometer (Burevestnik, St. Petersburg, Russia). The lattice parameters were calculated by a least-squares method. The samples for the microstructure examination were polished with a water suspension of Cr₂O₃. A solution of HF:HNO₃:H₂O (1:2:3-5) was used for etching

EPMA was performed in a Superprobe-733 microanalyzer (JEOL, Japan). In the cases in which the grain size/beam spot ratio was greater than 10:1, the measured values were taken as the chemical compositions of corresponding phases. For small grains when the above ratio was not fulfilled, the experimental values were accepted as the chemical compositions of a mixture of coexisting phases. For two-phase samples, these values are always located in a tie-line passing through the alloy composition under examination. Thus, the direction of the tie-lines could be determined. In the cases in which the three-phase triangles are narrow with respect to one of the elements, this approach is useful in distinguishing different phase fields.

3. Results and Discussion

For convenience, the following designations are used: α and β for α -Ti-based and β -Ti-based solid solutions, respectively; α_2 , γ , ξ , and ε for Ti₃Al, TiAl, Ti₅Al₁₁ and

TiAl₃-based phases, respectively; Z for a Ti₅Si₃-based phase; $\alpha 5/4$ and $\beta 5/4$ for low-temperature and high-temperature modifications of Ti₅Si₄; $\alpha 1/1$ and $\beta 1/1$ for low-temperature and high-temperature modifications of TiSi; and $\beta 1/2$ for the high-temperature modification of TiSi₂. The β -Ti(Si,Al)₂ designation was used for TC or $\beta 1/2$ phases in the cases when they could not be distinguished experimentally.

It should be noted in advance that we never observed the supposed high-temperature modification of the Ti₅Si₄ compound, nor the low-temperature allotropic forms of TiSi and TiSi₂. All of the x-ray patterns revealed Ti₅Si₄ with the Zr₅Si₄ structure type, corresponding to the lowtemperature form. This possibly results from the fact that $\alpha \leftrightarrow \beta$ transformation of the compound occurs at high temperatures with the participation of the liquid, in analogy to the particular formation of the binary compound Ti₅Si₄ (Fig. 1b). For the TiSi and TiSi₂ compounds, only the high-temperature structures FeB and ZrSi₂, respectively, were observed. However, the appearance of the thermal effects at 940 °C and 860 °C for the alloy 33Ti-27Si-40Al allowed us to ascribe them to the $\alpha \leftrightarrow \beta$ transformation in TiSi. The observed ZrSi₂ structure might correspond either to the high-temperature form of the TiSi₂ compound or to the TC. We did not have enough results to distinguish the TC. Therefore, we opted to consider the formation of the TC from the liquid phase as the

Section I: Basic and Applied Research

Table 1 Phase Composition of the Ti-Si-Al Alloys

Sample		Phase Composition According to					
(at.%)	Heat Treatment	X-ray	Metallography	EPMA	Totality of Data (a)		
63Ti-5Si-32Al	As-cast	$\alpha_2 + Z$	β^* (b) + eutectic (β + Z)		$\beta + Z$		
[1997Bul]	1300 °C, 40 h	$\alpha/\alpha_2 + Z$			$(\beta + Z)/(\alpha + \beta + Z)$		
	1300 °C, 40 h + 1150 °C, 40 h	$\alpha/\alpha_2 + Z$			$\alpha + \alpha_2 + Z$		
60Ti-36Si-4Al	As-cast	$Z + [\varepsilon] (c)$	Z + RL (d)		$Z + \varepsilon$		
56Ti-34Si-10Al	As-cast	$Z + \varepsilon + \alpha 5/4$	Z + RL		$Z + \varepsilon + \alpha 5/4$		
	1300 °C, 33 h				$Z + \varepsilon + \alpha 5/4$		
56Ti-38Si-6Al	As-cast	$Z + \alpha 5/4 + [?]$	$Z + \alpha 5/4$	$Z + \alpha 5/4$	$Z + \alpha 5/4 + \varepsilon$		
[1997Bul]	1400 °C, 36 h	$Z + \alpha 5/4$			$L + Z + \alpha 5/4$		
	1400 °C, 36 h + 1250 °C, 40 h	$Z + \alpha 5/4 + [?]$			$Z+\alpha 5/4+\varepsilon$		
	1250 °C, 40 h	$Z + \alpha 5/4 + [?]$			$Z+\alpha 5/4+\varepsilon$		
55Ti-5Si-40Al	As-cast		β^* + [eutectic (β + Z)]		$\alpha + \beta + Z$		
[1997Bul]	1400 °C, 9 h	$\gamma + Z$			$\alpha + \beta + Z$		
	1300 °C, 40 h	$[\alpha_2] + \gamma + Z$			$\alpha + \gamma + Z$		
	1300 °C, 40 h + 1150 °C, 33 h	$\gamma + Z$			$\alpha + \gamma + Z$		
	1300 °C, 40 h + 1150 °C, 33 h + 1090 °C, 45 h	$[\alpha_2]+\gamma+Z$			$\alpha_2 + \gamma + Z$		
	1300 °C, 40 h + 1150 °C, 33 h + 1090 °C, 45 h + 1050 °C, 38 h		$\alpha_2 + \gamma + Z$		$\alpha_2+\gamma+Z$		
	1300 °C, 40 h + 1150 °C, 33 h + 1090 °C, 45 h + 1050 °C, 38 h + 950 °C 36h		$\alpha_2 + \gamma + Z$		$\alpha_2 + \gamma + Z$		
54Ti-2Si-44Al [1997Bul]	As-cast		β^* + eutectic (β + Z)		$\alpha + \beta + Z$		
53Ti-3Si-44A1 [1997Bul]	As-cast	$\gamma + [Z]$	β^* + eutectic (β + Z)		$\alpha + \beta + Z$		
52Ti-4Si-44Al [1997Bul]	As-cast	$\gamma + [Z]$	β^* + eutectic (β + Z)		$\alpha + Z$		
51Ti-5Si-44Al	As-cast	$[\alpha_2] + \gamma + Z$	$[Z]$ + eutectic (β + Z)		$\alpha + \gamma + Z$		
[1997Bul]	1400 °C, 9 h	$\gamma + Z$			$\alpha + \gamma + Z$		
. ,	1300 °C, 38 h	γ + Ζ			$\alpha + \gamma + Z$		
	1300 °C, 38 h + 1250 °C, 37 h	$\dot{\gamma} + Z$			$\alpha + \gamma + Z$		
50Ti-2Si-48Al	As-cast	γ + [Z]	β*		$\alpha + \gamma + Z$		
[1997Bul]	1400 °C, 9 h	$\gamma + Z$	·		$\alpha + \gamma + Z$		
. ,	1300 °C, 35 h				$\alpha + \gamma + Z$		
50Ti-10Si-40Al	As-cast	$[\alpha_2] + \gamma + Z$	Z + eutectic $(\gamma + Z)$		$\gamma + Z$		
[1997Bul]	1300 °C, 38 h	$\gamma + Z$			$\gamma + Z$		
50Ti-30Si-20Al	As-cast	•••	$Z + \alpha 5/4 + RL$		$Z + \alpha 5/4 + \varepsilon$		
	1300 °C, 33 h				$Z + \alpha 5/4 + \varepsilon$		
50Ti-44Si-6Al	As-cast		$Z + \alpha 5/4 + \varepsilon$	$\varepsilon + Z + \alpha 5/4$	$\alpha 5/4 + \beta 1/1 + \varepsilon$		
	1400 °C, 36 h	$Z + \alpha 5/4 + [?]$			$L + \alpha 5/4$		
	1400 °C, 36 h + 1090 °C, 45 h	$Z + \alpha 5/4 + [?]$			$\alpha 5/4 + \beta 1/1 + \varepsilon$		
	1090 °C, 45 h + 950 °C, 36 h	$\alpha 5/4 + [?]$			$\alpha 5/4 + \beta 1/1 + \varepsilon$		
49Ti-3Si-48Al	As-cast	$[\alpha_2] + \gamma + [Z]$	α^* (e) + eutectic (α + Z)		$\alpha + \gamma + Z$		
[1997Bul]	1300 °C, 35 h				$\alpha + \gamma + Z$		
48Ti-4Si-8Al	As-cast	$\gamma + Z$	$[Z] + [eutectic (\alpha + Z)]$		$\alpha + \gamma + Z$		
[1997Bul]			+ eutectic $(\alpha + \gamma + Z)$				
	1400 °C, 9 h	$\gamma + Z$			$\alpha + \gamma + Z$		
47Ti-5Si-48Al	As-cast		[Z] + eutectic $(\gamma + Z)$		$\gamma + Z$		
[1997Bul]	1400 °C, 9 h				$\gamma + Z$		
	1300 °C, 35 h				$\gamma + Z$		
45Ti-4Si-51Al	As-cast	$\gamma + Z$	γ + eutectic (γ + Z)		$\gamma + Z$		
[1997Bul]	1300 °C, 35 h		$\gamma + Z$		$\gamma + Z$		
44Ti-2Si-54Al	As-cast	$\gamma + Z$	γ + eutectic (γ + Z)		$\gamma + Z$		
[1997Bul]	1270 °C, 32 h				$\gamma + Z$		
					(continued)		

Sample		Phase Composition According to				
(at.%)	Heat Treatment	X-ray	Metallography	EPMA	Totality of Data (a)	
42Ti-26Si-32Al	As-cast	$\varepsilon + Z + \alpha 5/4$	$Z + \varepsilon + RL$		$Z + \varepsilon + \alpha 5/4$	
41Ti-5Si-54Al	As-cast	$\gamma + Z$	γ + eutectic (γ + Z)		$\gamma + Z$	
[1997Bul]	1270 °C, 32 h				$\gamma + Z$	
40Ti-20Si-40Al	As-cast	ϵ + Z	$Z + \varepsilon + RL$		$Z + \varepsilon + \alpha 5/4$	
	1250 °C, 36 h				$\varepsilon + Z + \alpha 5/4$	
38Ti-2Si-60Al	As-cast	$\gamma + Z$	γ + eutectic (γ + Z)	γ	$\gamma + Z$	
	1270 °C, 25 h	,		, 	$\gamma + Z$	
37Ti-23Si-40Al	As-cast	$Z + \varepsilon + 5/4$	$Z + \varepsilon + RL$		$\epsilon + \alpha 5/4$	
35Ti-5Si-60Al	As-cast	$\gamma + \xi + \varepsilon + Z$	γ + eutectic (γ + Z)	$\gamma + \xi + \varepsilon + Z$	ξ + Z	
	1270 °C, 25 h	ξ + Ζ			ξ+Ζ	
33.5Ti-3.5Si-63Al	As-cast	$\xi = [v] + [Z]$	γ + eutectic (γ + Z)		ξ+Z	
33Ti-27Si-40Al	As-cast	$\alpha 5/4 + \epsilon + Al + ?$	Z + ? + RL		$\varepsilon = \frac{1}{1} + $	
33Ti-37Si-30Al	As-cast	β -Ti(Si,Al) ₂ + β 1/1 +	$Z + \alpha 5/4 + RL$		$\varepsilon + \beta$ -Ti(Si,Al)	
		Al + (?)			• • • • • • • • • • <u>•</u>	
33Ti-47Si-20Al	As-cast	$\beta 1/1 + \beta$ -Ti(Si,Al) ₂ + Al + Si + (?)	β -Ti(Si,Al) ₂ + RL	$\beta 1/1 + \beta - Ti(Si,Al)_2 + Al$	$\varepsilon + \beta$ -Ti(Si,Al) ₂ + Si	
32Ti-2Si-66Al	As-cast	$\gamma + \xi + Z$	ξ + eutectic (ξ + Z)	ξ	ξ + Z	
	1270 °C, 25 h				ξ + Z	
32Ti-20Si-48Al	As-cast	$Z + \alpha 5/4 + \varepsilon$	$Z + \varepsilon + RL$		$\varepsilon + \alpha 5/4$	
31Ti-39Si-30Al	As-cast	$\beta 1/2 + \beta 1/1 + A1 + [Z] + [\alpha 5/4]$	$Z + \alpha 5/4 + ? + RL$	$Z + \alpha 5/4 + \beta 1/1 + A1 + [Si]$	$\varepsilon + \beta \text{-Ti}(\text{Si},\text{Al})_2 + \text{Si}$	
30Ti-10Si-60A1	As-cast	[_] . [,.]	$Z + eutectic (\epsilon + Z)$		$\epsilon + \alpha 5/4 + Z$	
	1250 °C. 36 h		2 · • • • • • • • • • • • • • • • • • •	ε + Z	$\epsilon + \alpha 5/4 + Z$	
30Ti-22Si-48A1	As-cast	$\alpha 5/4 + \epsilon + A1$	$Z + \varepsilon + ? + RL$	012	$\varepsilon + \beta 1/1 + \beta$ -Ti(Si Al)	
29Ti-5Si-66Al	As-cast		ε + eutectic (ε + Z)	ε+ξ	ε + Z	
_, _, _, _, _, _, _, _, _,	1270 °C. 25 h		- · · · · · · · · · · · · · · · · · · ·		$\epsilon + Z$	
29Ti-17Si-54Al	As-cast	$\alpha 5/4 + \epsilon + ?$	$Z + \alpha 5/4 + \epsilon + RL$		$\epsilon + \alpha 5/4$	
29Ti-31Si-40Al	As-cast	β -Ti(Si,Al) ₂ + β 1/1	$Z + \alpha 5/4 + \varepsilon + RL$		$\varepsilon + \beta$ -Ti(Si,Al)	
		+ Al + ?			• • • • • • • • • • <u>•</u>	
27.5Ti-3.5Si-69Al	As-cast		ε + eutectic (ε + Z)		$\varepsilon + Z$	
27Ti-25Si-48Al	As-cast	$\alpha 5/4 + \varepsilon + Al$	$Z+\alpha 5/4+\varepsilon+RL$		$\varepsilon + \beta$ -Ti(Si,Al) ₂ + Si	
26Ti-1Si-73Al	As-cast	$\varepsilon + (?)$	ε + eutectic (ξ + ε)		$\xi + \varepsilon$	
26Ti-2Si-72Al	As-cast	$\varepsilon + (?)$	ε + eutectic (ε + Z)		$\epsilon + Z$	
	1270 °C, 25 h				$\varepsilon + Z$	
26Ti-5Si-69Al	As-cast		ε + eutectic (ε + Z)		$\varepsilon + Z$	
	1300 °C, 33 h				$\varepsilon + Z$	
26Ti-8Si-66Al	As-cast	$\varepsilon + (?)$	Z + eutectic (ϵ + Z)		$\varepsilon + \alpha 5/4$	
26Ti-10Si-64Al	As-cast		Z + eutectic (ϵ + Z)		$\varepsilon + \alpha 5/4$	
26Ti-14Si-60Al	As-cast	$\varepsilon + \alpha 5/4 + Al + (Z)$	$Z + \alpha 5/4 + \varepsilon + RL$		$\varepsilon + \beta 1/1$	
26Ti-17Si-57Al	As-cast	$\varepsilon + \alpha 5/4 + Al$	$Z + \alpha 5/4 + \varepsilon + RL$		$\varepsilon + \beta$ -Ti(Si,Al) ₂	
26Ti-20Si-54Al	As-cast	$\varepsilon + \alpha 5/4 + Al$	$Z + \alpha 5/4 + \varepsilon + RL$		$\varepsilon + \beta$ -Ti(Si,Al) ₂ + Si	
25Ti-3Si-72Al	As-cast	ε + Al	ε + RL		8	
25Ti-9Si-66Al	As-cast	ε + Al	$Z + \varepsilon + RL$		ε	
25Ti-15Si-60Al	As-cast	$\varepsilon + \alpha 5/4 + Al + (?)$	$Z + \alpha 5/4 + \varepsilon + RL$		$\varepsilon + \beta$ -Ti(Si,Al) ₂ + Si	
25Ti-16Si-59Al	As-cast	$\varepsilon + \alpha 5/4 + Al$	$Z + \alpha 5/4 + \varepsilon + RL$		$\varepsilon + \beta$ -Ti(Si,Al) ₂ + Si	
24Ti-1Si-75Al	As-cast		ε + RL		$\varepsilon + Al$	
23Ti-5Si-72Al	As-cast		ε + RL		ε + Al	
20Ti-2Si-78Al	As-cast		ε + RL		$\varepsilon + Al$	
17Ti-5Si-78Al	As-cast		ε + RL		ε + Al	
8Ti-2Si-90Al	As-cast		ε + RL		ε + Al	
5Ti-5Si-90Al	As-cast	ε + Al + ?	ε + RL	ε + Al	ε + Al + Si	

 Table 1
 Phase Composition of the Ti-Si-Al Alloys (continued)

(a) Phase composition of as-cast samples corresponds to the solidus surface. (b) β^* , transformed primary β -phase (c) In [] small amount (traces) of phase is shown.

(d) RL, remnant liquid
(e) α*, transformed at cooling α-phase

Fig. 2 The solidus surface of the Ti-Si-Al system according to the results of this investigation and our previous data [1997Bul]: (\bigcirc) single-phase sample; (\bigcirc) two-phase sample; (\bigcirc) three-phase sample; and (\triangle) EPMA results

more complex variant. Meanwhile, we do not rule out the possibility that this phase is the high-temperature form of $TiSi_2$.

Phase compositions of the alloys studied are summarized in Table 1. The solidus projection resulted from this investigation and our previous data [1997Bul] for the Ti-corner of the system is shown in Fig. 2. The homogeneity ranges of the phases were established mainly from the EPMA results (Table 2). It should be noted that the EPMA results obtained for the cast alloys were attributed to the solidus temperatures as they were observed in the Ticorner of the system [1997Bul]. The solubility of Si in the Ti-Al-based binary phase or of Al in the Ti-Si-based binary phase was found to be essentially independent of temperature. The maximum solubility of Si in the γ - and ξ -phases was established to be about 0.5 and <0.5 at.%, respectively. TiAl₃ dissolves up to 15 at.% Si due to substitution of Al for Si that was evidenced by decreasing of the lattice parameters of the ε -phase versus the Si content. This result is in good agreement with the value of 15 at.% reported in Schob et al. [1962Sch]. This is also in reasonable agreement with the value of 20 at.% reported in Schubert et al. [1963Sch].

According to our previous data [1997Bul], the maximum solubility of Al in the Z phase is about 8 at.%. The peculiarity of the atom substitution along the Ti-rich boundary was discussed in Bulanova et al. [1997Bul]. The Al solubility in the Ti_5Si_4 and TiSi phases is about 0.5 at.%. The

result for TiSi does not agree with data reported by Schubert et al. [1963Sch] (~9 at.%) and Kamei et al. [1968Kam] (~12 at.%). The maximum Al solubility in the TC or $\beta 1/2$ was found to be about 16 at.%. The homogeneity range shows that Al mainly substitutes for Si.

According to the present results, phase equilibria at the solidus temperatures in the concentration region under investigation involve phases γ , ξ , ε , Z, $\beta 5/4$, $\alpha 5/4$, $\beta 1/1$, TC (if it forms), $\beta 1/2$, Si, and Al. These phases interact to form the following three-phase fields: $Z + \gamma + \xi$; $Z + \xi + \varepsilon$; $Z + \varepsilon + \alpha 5/4$; $Z + \alpha 5/4 + \beta 5/4$; $\varepsilon + \alpha 5/4 + \beta 1/1$; $\varepsilon + \beta 1/1 + \beta$ -Ti(Si,Al)₂; $\varepsilon + \beta$ -Ti(Si,Al)₂ + Si; and $\varepsilon +$ Si + Al. If a TC forms from the liquid, the additional three-phase regions $\beta 1/1 +$ TC + $\beta 1/2$ and TC + $\beta 1/2 +$ Si should occur.

The existence of the $\varepsilon + \beta$ -Ti(Si,Al)₂ + Si and $\varepsilon + Si +$ Al three-phase regions at the solidus temperatures does not agree with results of the studies of Kamei et al. [1968Kam] and Zakharov et al. [1988Zak], in which the three-phase regions $\varepsilon + TC + Al$ and TC + Si + Al are shown. Our results are based on EPMA and x-ray diffraction data for the as-cast alloy 5Ti-5Si-90Al. Both methods definitely revealed ε and Al phases. The x-ray pattern contained additional reflections that could not be indexed. This showed the three-phase nature of the alloy. The ε -phase in the alloy contained 8.6 at.% Si. The phase relations shown in the solidus surface (Fig. 2) suggest that the third phase could not be a TC. It could be Si or an additional unknown phase.

Sample (at.%)			Identification of		EPMA Results (at.%)		
Ti	Si	Al	the Measurement	Ti	Si	Al	
As-cast							
56	38	6	Z	61.05	38.36	0.59	
50	44	6	α5/4	56.24	43.14	0.60	
			α5/4	56.19	43.22	0.59	
			3	24.51	12.80	62.69	
			ε	24.24	12.95	62.81	
			ε	24.14	13.20	62.63	
38	2	60	γ	35.42	0.54	64.04	
			γ	33.89	0.53	65.58	
			γ γ	34.96	0.51	64.52	
			γ	33.44	0.67	65.89	
35	5	60	ξ	33.00	0.83	66.18	
			ξ	32.57	0.79	66.64	
			ξ	32.61	0.84	66.55	
			ž	62.41	35.14	2.46	
33	47	20	β -Ti(Si,Al) ₂	36.10	55.10	8.80	
			β -Ti(Si,Al) ₂	33.53	57.47	8.99	
			B1/1	50.54	49.38	0.04	
			81/1	48.87	51.06	0.06	
32	2	66	έ	32.04	0.54	67.42	
			ž	32.13	0.42	67.45	
			ž	32.45	0.47	67.08	
			ت بن	31.22	0.55	68.24	
			ت بن	31.64	0.48	67.88	
31	39	30	B-Ti(Si Al)	36.30	47.13	16.58	
		20	β Ti(Si,Al) ₂ B-Ti(Si,Al) ₂	37.31	51.26	11.43	
			Al	0.30	1.84	97.87	
29	5	66	Ę	31.22	1.62	67.16	
	0	00	5	23.52	2.80	73.68	
			Ê	24.01	1.67	74.32	
			8	23.28	1.71	75.01	
5	5	90	Ê	24.95	8.61	66.44	
U	0	20	Ê	24.60	8.72	66.67	
			Al	0.37	1.82	97.82	
			Al	0.20	1.06	98.73	
1270 °C							
35	5	60	έ	32.96	0.45	66.59	
			ž	32.50	0.46	67.04	
			ž	32.88	0.48	66.64	
			ت د	32.41	0.49	67.10	
			Ž	61.01	36.49	2.50	
			 Z	61.52	36.14	2.34	
29	5	66	8	26.88	2.31	70.81	
	0	00	Ê	26.07	1.24	72.69	
			Z	60.08	36.82	3.10	
1250 °C			-	00100	20102	0110	
40	20	40	£	24.81	3.81	71.38	
	20	10	Ê	24.98	3.67	71.34	
			Ê	25.03	3.78	71.19	
			Ê	24.82	3.78	71.40	
			2	24.69	3.83	71.48	
30	10	60	2	25.35	3 58	71.40	
	10	00	2	25.33	3 52	71.15	
			7	60.28	37.99	1 73	
			7	60.20	37.91	1.75	
			L	00.57	51.71	1.72	

Table 2 Results of EPMA of Ti-Si-Al Alloys

Fig. 3 The melting diagram (solidus + liquidus) of the Ti-Si-Al system according to results of this investigation and our previous data [1997Bul]: (\bigcirc) single-phase sample; (\bigcirc) two-phase sample; and (\bigcirc) three-phase sample

The melting diagram (solidus plus liquidus) of the Ti-Si-Al system is shown in Fig. 3. In the studied region, the liquidus surface is characterized by the fields of primary crystallization of γ , ξ , ε , Z, $\beta 5/4$, $\alpha 5/4$, $\beta 1/1$, Si, Al, and β -Ti(Si,Al)₂ or $\beta 1/2$. These are separated from each other by the following monovariant curves showing the composition of liquids involved in the reaction:

- $\begin{array}{ll} \gamma: & L + \alpha \leftrightarrow \gamma \; (p_5 E), \, L \leftrightarrow \gamma + Z \; (Ee_3 U_4), \, L + \gamma + \xi \\ & (p_7 U_4, \, \text{the equilibrium shifts from peritectic } L + \gamma \\ & \leftrightarrow \xi \; \text{to eutectic } L \leftrightarrow \gamma + \xi); \end{array}$
- $\begin{aligned} \xi: \quad L + \gamma + \xi \ (p_7 U_4), \ L \leftrightarrow \xi + Z \ (U_4 U_5), \ L + \xi + \varepsilon \\ (p_8 U_5, \ \text{the equilibrium shifts from peritectic} \ L + \xi \\ \leftrightarrow \varepsilon \ \text{to eutectic} \ L \leftrightarrow \xi + \varepsilon); \end{aligned}$
- $\begin{array}{ll} \varepsilon: & L + \xi + \varepsilon \; (p_8 U_5), \; L + \varepsilon + Z \; (U_5 U_6, \; \text{the equilibrium} \\ & \text{modifies from eutectic } L \leftrightarrow \varepsilon + Z \; \text{to peritectic } L + \\ & Z \leftrightarrow \varepsilon), \; L \leftrightarrow \varepsilon + \alpha 5/4 \; (U_6 U_8), \; L \leftrightarrow \varepsilon + \beta 1/1 \\ & (U_8 U_9), \; L \leftrightarrow \varepsilon + \beta \text{Ti}(\text{Si},\text{Al})_2 \; (U_9 U_{10}), \; L \leftrightarrow \varepsilon + \text{Si} \\ & (U_{10} U_{11}), \; L + \varepsilon \leftrightarrow \text{Al} \; (p_9 U_{11}); \end{array}$
- Z: $L \leftrightarrow \beta + Z (e_4 e_1 U_2), L \leftrightarrow \alpha + Z (U_2 E), L \leftrightarrow \gamma + Z (E e_3 U_4), L \leftrightarrow \xi + Z (U_4 U_5), L + \varepsilon + Z (U_5 U_6), L + Z + \alpha 5/4 (U_1 U_6, equilibrium changes character from peritectic L + Z \leftrightarrow \alpha 5/4 to eutectic L \leftrightarrow Z + \alpha 5/4), L + Z \leftrightarrow \beta 5/4 (p_1 U_1);$
- β 5/4: L + Z $\leftrightarrow \beta$ 5/4 (p₁U₁), L + Z + α 5/4 (U₁U₆), L + β 5/4 + α 5/4 (p₂U₁, the mode of the reaction is unknown);

- $\begin{array}{l} \alpha 5/4 \ L + \beta 5/4 + \alpha 5/4 \ (p_2 U_1), \ L \leftrightarrow \varepsilon + \alpha 5/4 \ (U_6 U_8), \ L + \alpha 5/4 + \beta 1/1 \ (p_3 U_8, \ equilibrium \ changes \ character \\ from \ peritectic \ L + \alpha 5/4 \leftrightarrow \beta 1/1 \ to \ eutectic \ L \leftrightarrow \\ \alpha 5/4 + \beta 1/1); \end{array}$
- $\beta 1/1: L + \alpha 5/4 + \beta 1/1 (p_3U_8), L \leftrightarrow \varepsilon + \beta 1/1 (U_8U_9),$ possibly L + $\beta 1/1 + TC (U_3U_9)$, equilibrium changes character from eutectic L $\leftrightarrow \beta 1/1 + TC$ to peritectic L + TC $\leftrightarrow \beta 1/1$), L $\leftrightarrow \beta 1/1 + \beta 1/2 (e_2U_3);$
- $\begin{array}{l} \beta 1/2: L \leftrightarrow \beta 1/1 + \beta 1/2 \ (e_2 U_3), \ \text{possibly } L + \beta 1/2 \leftrightarrow \text{TC} \\ (U_3 p_6 U_7), \ L \leftrightarrow \beta 1/2 + \text{Si} \ (e_5 U_7); \end{array}$
- TC: L + $\beta 1/1$ + TC (U₃U₉), L \leftrightarrow TC + Al (U₉U₁₀), L \leftrightarrow TC + Si (U₇U₁₀), L \leftrightarrow $\beta 1/2$ + Si (e₅U₇), L + $\beta 1/2 \leftrightarrow$ TC (U₃p₆U₇);
- Si: $L \leftrightarrow \beta 1/2 + Si (e_5U_7)$, possibly $L \leftrightarrow TC + Si (U_7U_{10})$, $L \leftrightarrow \varepsilon + Si (U_{10}U_{11})$, $L \leftrightarrow Si + Al (U_{11}e_6)$;
- $\text{Al:} \quad L + \epsilon \leftrightarrow \text{Al } (p_9 U_{11}), \, L \leftrightarrow \text{Si} + \text{Al } (U_{11} e_6).$

The isopleths that show isoconcentrates for Si, Ti, and Al are shown in Fig. 4-6. Tables 3 and 4 list the temperatures of phase transformations. The character of equilibria at so-lidification, as well as a location of invariant points and monovariant curves, were determined from an examination of the microstructures of as-cast samples.

The alloys 44Ti-2Si-54Al, 41Ti-5Si-54Al, 38Ti-2Si-60Al, 35Ti-5Si-60Al, and 33.5Ti-3.5Si-63Al are located in the field of γ -phase primary crystallization. The microstruc-

Fig. 4 Isopleth at 5 at.% Si of the Ti-Si-Al system: (\bullet) two-phase sample; (\bullet) three-phase sample; and (\triangle) DTA results

Fig. 5 Isopleth at 50 at.% Ti of the Ti-Si-Al system: (\bullet) two-phase sample; (\bullet) three-phase sample; and (\triangle) DTA results

ture of the last alloy shows the presence of Z phase in the eutectic mixture. So, this eutectic mixture is of an $L \leftrightarrow \gamma + Z$ nature (Ee₃U₄). This is possible if the eutectic curve extends to compositions ≥ -60 at.% Al.

Location of the second monovariant curve corresponding to the reaction $L + \gamma \leftrightarrow \xi$ coming into the invariant point U_4 (p_7U_4 ; Fig. 3) was determined from a comparison of the microstructures of the samples 44Ti-2Si-54Al, 38Ti-2Si-

Fig. 6 Isopleth at 40 at.% Al of the Ti-Si-Al system: (\bullet) two-phase sample; (\bullet) three-phase sample; and (\triangle) DTA results

60Al, and 32Ti-2Si-66Al. The primary phase in the alloy 32Ti-2Si-66Al has a striped appearance. This can be due to solid-state transformations of the primary phase, in contrast to the first two samples. Among the phases of the Ti-Al system in the concentration interval of interest, only Ti₅Al₁₁ undergoes decomposition in the solid state. Thus, the conclusion was made that the primary phase in the alloy 32Ti-2Si-66Al is ξ -phase rather than γ -phase, which was observed in the alloys 44Ti-2Si-54Al and 38Ti-2Si-60Al. The eutectic morphology in these three alloys looks rather similar. The typical feature is the presence of the Z phase in the eutectic composition. Then, in the alloy 32Ti-2Si-66Al after the primary solidification of the ξ -phase, the eutectic reaction $L \leftrightarrow \xi + Z (U_4 U_5)$ takes place. Thus, the monovariant curve corresponding to the peritectic reaction $L + \gamma \leftrightarrow \xi$ (p_7U_4) , comes out of the composition 28Ti-72Al (p_7) , passes between the alloys 33.5Ti-3.5Si-63Al and 32Ti-2Si-66Al, and meets the monovariant curve corresponding to the eutectic reaction $L \leftrightarrow \gamma + Z$ (Ee₃U₄) at the composition \sim 33.5Ti-6.5Si-60Al (invariant point U₂). The outgoing monovariant reaction is $L \leftrightarrow \xi + Z (U_4 U_5)$. The invariant equilibrium can be written then as $L + \gamma \leftrightarrow \xi + Z$. This results in the $\gamma + \xi + Z$ field at the solidus surface, which is very narrow owing to an insignificant difference in compositions (no more than 1 at.%) of γ - and ξ -phases coexisting in this three-phase region. The temperature of the invariant equilibrium was determined to be \sim 1390 °C.

The fields of the primary crystallization of the ξ - and ε -phases are separated by the monovariant liquid curve p_8U_5 of the reaction in a L + ε + ξ volume, which changes from peritectic L + $\xi \leftrightarrow \varepsilon$ to eutectic L $\leftrightarrow \xi$ + ε after intersecting the boundary of the homogeneity range of the ε -phase. In the alloys 29Ti-5Si-66Al, 27.5Ti-3.5Si-69Al, and 26Ti-2Si-72Al, the primary phase is ε , while the Z phase is eutectic constituent, so the nature of the eutectic mixture in these alloys results from the eutectic L $\leftrightarrow \varepsilon + Z$ reaction.

No ternary eutectic mixture was observed for the alloys in this concentration field, so an equilibrium of $L + \xi + \varepsilon + Z$ can be assumed to be of peritectic type $L + \xi \leftrightarrow \varepsilon + Z$. Then, the composition of invariant point U_5 should be located outside the three-phase field $\xi + \varepsilon + Z$ in the solidus surface. This is possible when the ε -corner of the $\xi + \varepsilon + Z$ triangle is located at a low Si content. Accordingly, the position of the invariant point U_5 was accepted at ~30Ti-6Si-64Al. The above equilibrium takes place at ~1380 °C. Location of the ε -corner of the three-phase field $\xi + \varepsilon + Z$ at the solidus surface was determined to be at ~0.5 at.% Si on the basis of the lattice parameters of the ε -phase (Table 5).

	Liquidus		Solidus		Tie-lines Surface	
Alloy	<i>T</i> (°C) (a)	Primary Phase	<i>T</i> (°C)	Phase Region	<i>T</i> (°C)	Phase Boundary
60Ti-36Si-4Al	[1960]	Z	1365	$Z + \varepsilon$		
56Ti-34Si-10Al	[1780]	Z	1370	$Z + \varepsilon + \alpha 5/4$		
56Ti-38Si-6Al	>1790 (b)	Z	1360	$Z + \varepsilon + \alpha 5/4$		
	[1860]					
54Ti-2Si-44Al	1490 (c)	β	1430 (c)	$\alpha + \beta + Z$	1465	$L + \beta/L + \beta + Z$
	[1520]					
53Ti-3Si-44Al	1465 (c)	β	1420 (c)	$\alpha + \beta + Z$	1385	$L + \beta/L + \beta + Z$
50Ti-10Si-40Al	1480 (c)	Z	1415 (c)	$\gamma + Z$		· · ·
	[1520]					
50Ti-30Si-20Al	[1620]	Z	1355	$Z + \varepsilon + \alpha 5/4$		
50Ti-44Si-6Al	1760	α5/4	1115	$\alpha 5/4 + \varepsilon + \beta 1/1$		
44Ti-2Si-54Al	1460	γ	1410	$\gamma + Z$		
42Ti-26Si-32Al	1500	Ž	1355	$Z + \varepsilon + \alpha 5/4$		
40Ti-20Si-40Al	[1490]	Z	1355	$Z + \varepsilon + \alpha 5/4$	1385	$L + Z/L + Z + \varepsilon$
38Ti-2Si-60Al	1450	γ	1395	$\gamma + Z$		
37Ti-23Si-40Al	[1470]	Z	1130	$\epsilon + \alpha 5/4$		
35Ti-5Si-60Al	1430	2	1380	ξ + Ζ		
33Ti-27Si-40A1	1435	Z	1020	$\beta + 2$ $\beta 1/1 + \epsilon + \beta - Ti(Si Al)_{-}$		•••
33Ti-37Si-30Al	1410	Z	1015	$\epsilon + \beta - Ti(Si, Al)_{2}$		•••
33Ti-47Si-20Al	1245	TC	595	$\varepsilon + Si + \beta - Ti(Si Al)_{-}$		•••
32Ti-2Si-66A1	[1400]	۲C ٤	1390	ε + 7		•••
32Ti-20Si-48A1	[1400]	ς 7	1115	$s + \alpha 5/4$		
31Ti-39Si-30A1	1390	a5/4	605	$s + Si + \beta_T Ti(Si Al)$		
30Ti-10Si-60A1	1390	7	1350	$7 + s + \alpha 5/4$		
30Ti-22Si-48A1	1445 (d)	7	1015	B1/1 + c + B - Ti(Si A1)		
5011 2251 40/11	[1400]	L	1015			
29Ti-5Si-66A1	1420	e	1380	$\varepsilon + Z$		
29Ti-17Si-54A1	1395	7	1215	$\epsilon + \alpha 5/4$		•••
27 5Ti-3 5Si-69A1	1460	£	[1380]	$\varepsilon + \overline{z}$	 1410	 L + ɛ/L + ٤ + ɛ
27Ti-73A1	1440	ν	1395	δ + 2	1110	Eloneigio
27Ti-25Si-48A1	1400	Z	595	$\varepsilon + Si + \beta - Ti(Si Al)_{-}$		•••
26Ti-74A1	1435	Ĕ	1390	έ+ε		
26Ti-1Si-73A1	1415	5	1375	ς - Ο έ + ε		
26Ti-2Si-72Al	1420	 ۶	1385	$\overline{Z} + \varepsilon$		•••
26Ti-5Si-69A1	1435	e	1365	$\overline{Z} + \varepsilon$		•••
26Ti-8Si-66Al	[1380]	7	1295	$\epsilon + \alpha 5/4$		
26Ti-10Si-64A1	[1380]	Z	1300	$\varepsilon + \alpha 5/4$		•••
26Ti-14Si-60Al	[1380]	Z	1500	$\varepsilon + \beta 1/1$	1380	$I_1 + 7/I_2 + \varepsilon + 7$
26Ti-17Si-57Al	[1390]	Z		$\varepsilon + \beta - Ti(Si Al)_{\alpha}$	1390	$L + Z/L + \varepsilon + Z$
26Ti-20Si-54Al	1380	Z	595	$\varepsilon + Si + \beta - Ti(Si Al)_{2}$	1590	
25Ti-75A1	1450	Ĕ	640	$s + \Delta 1$		
25Ti-3Si-72A1	1415	5	010	e e e e e e e e e e e e e e e e e e e	 (640) (e)	$I_1 + \varepsilon + Al/\varepsilon + Al$
25Ti-9Si-66A1	1115	7	1280	6		LICTIMOTIA
25Ti-15Si-60A1	1385	7	600	6		
25Ti-16Si-59A1	1385	7	600	$s + Si + \beta_{-}Ti(Si Al)$	1385	 I + 7/I + s + 7
24Ti-1Si-75A1	1445	<u>د</u>	000	$\epsilon + Al$	1505	
23Ti-5Si-72A1	1400	c		e + A1		•••
20Ti_2Si_78A1	1415	č		e + Al		•••
17Ti-5Si-78A1	1350	c		e + Al	 660	 [_+ ɛ/I_+ ɛ + Δ1
8Ti-2Si-9041	1550	c		e + Al	660	$L + \epsilon/L + \epsilon + \Delta I$
5Ti_5Si_00A1		5		c + A1 + Si	660	
511-551-70/AI		ε		CTAIT SI	000	$L + \varepsilon / L + \varepsilon + AI$

Table 3 Solidification Temperatures the Ti-Si-Al Samples Measured for As-Cast Alloys

(a) In [] our estimation of the temperature is given based on the totality of experimental data.

(b) After heating up to this temperature the sample was not melted.

(c) Data from Bulanova et al. [1997Bul]

(d) \downarrow , the temperature taken at cooling

(e) Effect results from nonequilibrium liquid

	T (°C) (a)							
Alloy	$L + \xi \leftrightarrow \epsilon + Z$	$L + Z \leftrightarrow \epsilon + \alpha 5/4$	$L + \alpha 5/4 \leftrightarrow \epsilon + \beta 1/1$	$L+\beta 1/1\leftrightarrow \epsilon+TC$	$L + TC \leftrightarrow \epsilon + Si$	$L + \epsilon \leftrightarrow Al + Si$		
56Ti-34Si-10Al		1370						
56Ti-38Si-6Al		1360						
50Ti-30Si-20Al		1355						
50Ti-44Si-6Al			1115	(1025) (b)	(600)			
42Ti-26Si-32Al		1355						
40Ti-20Si-40Al		1355						
37Ti-23Si-40Al		1345			(590)			
35Ti-5Si-60Al	1380							
33Ti-27Si-40Al (a)		1350	1100	1020	(605)	(585)		
33Ti-37Si-30Al			1120	1015	(600)			
33Ti-47Si-20Al					595			
32Ti-20Si-48Al		1320	(1095)		(600)	(580)		
31Ti-39Si-30Al				1015	605			
30Ti-10Si-60Al		1350						
30Ti-22Si-48Al			1090	1015	(600)	(580)		
29Ti-5Si-66Al	1380							
29Ti-17Si-54Al			1090		(595)	(580)		
29Ti-31Si-40Al			1110			(570)		
27Ti-25Si-48Al			1125	1035	595			
26Ti-2Si-72Al	1385							
26Ti-8Si-66Al		1365						
26Ti-10Si-64Al		1345						
26Ti-14Si-60Al			(1105)		(605)	(590)		
26Ti-17Si-57Al			1095		(600)	(580)		
26Ti-20Si-54Al			1090	1010	595	(575)		
25Ti-9Si-66Al		1350			(615)	(580)		
25Ti-15Si-60Al			1095		600	(580)		
25Ti-16Si-59Al			1095	1015	600	(580)		
Average	1380	1356 ± 8	1105 ± 15	1016 ± 5	601 ± 5	580 ± 2		

Table 4	Temperatures of Invariant	Equilibria of the Ti-Si-Al S	System Measured for	: As-Cast Samples
			•/	

(a) Effects at 840 and 760 °C were ascribed to $\alpha 5/4 + \beta 1/1 \leftrightarrow \varepsilon + \alpha 1/1$ (due to nonequilibrium solidification) and $\varepsilon + \beta 1/1 \leftrightarrow \alpha 1/1 + TC$. (b) In () effects resulted from nonequilibrium crystallization of as-cast samples are shown.

The monovariant reaction $L \leftrightarrow \varepsilon + Z (U_5U_6)$ also changes its character from eutectic to peritectic $L + Z \leftrightarrow \varepsilon$ when intersecting the boundary of the homoheneity region of the ε -phase. Thus, ε -phase melts congruently at an Si content of ~0.5-8.5 at.%, and incongruently at 0-0.5 and 8.5-15 at.% Si. The intersection of the monovariant liquid curve $L + Z + \varepsilon (U_5U_6)$ with the ε -phase boundary occurs in the vicinity of the composition 25Ti-8.5Si-66.5Al, which is determined from the microstructure of the alloy 25Ti-9Si-66Al, where the primary phase is Z, in a very small amount. The last phase is also primary Z in the alloys 33Ti-37Si-30Al, 30Ti-10Si-60Al, 29Ti-31Si-40Al, 27Ti-25Si-48Al, 26Ti-14Si-60Al, 26Ti-17Si-57Al, 26Ti-20Si-54Al, 25Ti-15Si-60Al, and 25Ti-16Si-59Al. So, the field of its primary crystallization is very wide.

In the samples 50Ti-44Si-6Al and 31Ti-39Si-30Al, the primary phase is α 5/4. The comparison of the alloys 33Ti-37Si-30Al and 31Ti-39Si-30Al revealed different kinds of the primary phases, as follows: Z in the first one; and α 5/4 in the second. So, the monovariant liquid curve corresponding to the equilibrium L + Z + α 5/4 (U₁U₆) passes between

the compositions of these two alloys, and passes near the composition of the alloy 50Ti-44Si-6Al on the side of higher Ti concentration. The equilibrium changes from peritectic to eutectic $L \leftrightarrow Z + \alpha 5/4$ in the vicinity of the first alloy. The curve then decreases into the invariant point U_6 of the equilibrium $L + Z \leftrightarrow \varepsilon + \alpha 5/4$. The temperature of this equilibrium was determined to be 1356 °C. The composition of the invariant point U_6 was estimated to be located at 24Ti-39Si-37Al. The coordinates of invariant equilibrium $L + Z + \alpha 5/4 + \beta 5/4$ were not determined, while the nature of the primary phase in the alloy 50Ti-44Si-6Al allowed us to assume the composition of the invariant point U_1 at ~51Ti-47Si-2Al.

In the alloy 33Ti-47Si-20Al, the primary phase has the structure of a ZrSi₂ type and melts congruently. This might be either TC or $\beta 1/2$. Then two additional curves of monovariant equilibria should be located between the compositions of the above phase and the curve U_1U_6 . These seem to be L + $\alpha 5/4 + \beta 1/1$ (p_3U_8 changes from peritectic L + $\alpha 5/4 \leftrightarrow \beta 1/1$ to eutectic L $\leftrightarrow \alpha 5/4 + \beta 1/1$) and L + $\beta 1/1 + \beta$ -Ti(Si,Al)₂ (p_3U_8 changes from eutectic L $\leftrightarrow \beta 1/1 + \beta$ -

Phase	Crystal Structure	Lattice Periods, Å	Remarks	Refs.
γ, TiAl	AuCu, tP4-P4/mmm	a = 4.0155 - 3.976		[1983Rog]
		c = 4.0625 - 4.049		
		a = 4.005, c = 4.070	50Ti-50Al	[1985Vil]
		a = 4.000(1), c = 4.075(1)	50Ti-50Al, 1200 °C + 1000 °C	[1995Bra]
		a = 3.994(1), c = 4.080(1)	47.5Ti-52.5Al, 1200 °C + 1000 °C	[1995Bra]
		a = 3.989(1), c = 4.081(1)	45Ti-55Al, 1200 °C + 1000 °C	[1995Bra]
		a = 3.984(1), c = 4.079(1)	42.5Ti-57.5Al, 1200 °C + 1000 °C	[1995Bra]
		a = 3.983(1), c = 4.074(1)	40Ti-60Al, 1200 °C + 1000 °C	[1995Bra]
		a = 3.9869, c = 4.0539	Al-rich boundary	[1990Sch]
		$a = 3.991 \pm 0.002$	44Ti-2Si-54Al, as-cast	This work
		$c = 4.048 \pm 0.004$,	
		$a = 4.006 \pm 0.004$	41Ti-5Si-54A1 as-cast	This work
		$c = 4.073 \pm 0.005$		
		$a = 3.976 \pm 0.007$	38Ti-2Si-60A1 as-cast	This work
		$a = 3.976 \pm 0.007$ $c = 4.04 \pm 0.01$	5011 251 00/11, us cust	This work
		$a = 3.089 \pm 0.003$	35Ti-5Si-60A1 as-cast	This work
		$a = 5.989 \pm 0.003$	5511-551-00Ai, as-east	THIS WORK
		$c = 3.080 \pm 0.004$	32Ti 2Si 66A1 as cast	This work
		$a = 5.980 \pm 0.000$	5211-251-00Al, as-cast	THIS WOLK
۲۳: ۸۱	7.1.411	$c = 4.08 \pm 0.01$		[10006-1-1
$\xi \Pi_5 A \Pi_{11}$	$ZrAl_3$, 110	a = 3.9230, c = 16.5349		[19908ch]
		a = 3.917, c = 16.524		[1990Sti]
		$a = 3.920 \pm 0.002$	2/11-/3AI, as-cast	This work
		$c = 16.54 \pm 0.01$		
		$a = 3.900 \pm 0.002$	2611-74Al, as-cast	This work
		$c = 16.55 \pm 0.01$		
		$a = 3.926 \pm 0.001$	35Ti-5Si-60Al, as-cast	This work
		$c = 16.553 \pm 0.005$		
		$a = 3.916 \pm 0.002$	35Ti-5Si-60Al, 1270 °C	This work
		$c = 16.58 \pm 0.01$		
		$a = 3.924 \pm 0.001$	33.5Ti-3.5Si-63Al, as-cast	This work
		$c = 16.552 \pm 0.006$		
		$a = 3.927 \pm 0.002$	32Ti-2Si-66Al, as-cast	This work
		$c = 16.542 \pm 0.007$		
ε, TiAl ₃	TiAl ₃ , tI8-I4/mmm	a = 3.8488, c = 8.5982		[1990Sch]
		a = 3.85, c = 8.596		[1990Sti]
		$a = 3.857 \pm 0.001$	27Ti-73Al, as-cast	This work
		$c = 8.593 \pm 0.004$		
		$a = 3.856 \pm 0.001$	26Ti-74Al, as-cast	This work
		$c = 8.589 \pm 0.003$		
		$a = 3.852 \pm 0.001$	25Ti-75Al, as-cast	This work
		$c = 8.595 \pm 0.004$		
		$a = 3.842 \pm 0.001$	60Ti-36Si-4Al, as-cast	This work
		$c = 8.525 \pm 0.001$		
		$a = 3.836 \pm 0.003$	56Ti-34Si-10Al, as-cast	This work
		$c = 8.60 \pm 0.01$		
		$a = 3.823 \pm 0.003$	50Ti-30Si-20Al, as-cast	This work
		$c = 8.58 \pm 0.01$		
		$a = 3.823 \pm 0.004$	42Ti-26Si-32Al, as-cast	This work
		$c = 8.59 \pm 0.01$		
		$a = 3.837 \pm 0.005$	40Ti-20Si-40Al, as-cast	This work
		$c = 8.59 \pm 0.01$		
		$a = 3.806 \pm 0.002$	37Ti-23Si-40A1, as-cast	This work
		$c = 8576 \pm 0.005$, uo east	ing work
		$a = 3.796 \pm 0.002$	33Ti-27Si-40A1 as-cast	This work
		$c = 8533 \pm 0.002$	5511 2751 7 0711, d5-0d5t	THIS WOLK
		$c = 0.000 \pm 0.007$		
				(continued)

 Table 5
 The Crystal Structure of Ti-Si-Al Phases

Section I: Basic and Applied Research

Phase	Crystal Structure	Lattice Periods, Å	Remarks	Refs.
		$a = 3.802 \pm 0.001$	32Ti-20Si-48Al, as-cast	This work
		$c = 8.571 \pm 0.004$		
		$a = 3.833 \pm 0.003$	30Ti-10Si-60Al, as-cast	This work
		$c = 8.606 \pm 0.009$		
		$a = 3.805 \pm 0.003$	30Ti-22Si-48Al, as-cast	This work
		$c = 8.55 \pm 0.01$		
		$a = 3.840 \pm 0.002$	29Ti-5Si-66Al, as-cast	This work
		$c = 8.579 \pm 0.005$		
		$a = 3.844 \pm 0.002$	29Ti-5Si-66Al, 1270 °C	This work
		$c = 8.596 \pm 0.005$		
		$a = 3.812 \pm 0.002$	2911-1/S1-54AI, as-cast	This work
		$c = 8.567 \pm 0.009$	27 5T: 2 5S: (0.41	This are de
		$a = 3.850 \pm 0.001$	27.511-3.351-09AI, as-cast	This work
		$c = 3.572 \pm 0.005$ $a = 3.851 \pm 0.001$	26Ti 1Si 73A1 as cast	This work
		$a = 3.851 \pm 0.001$ $c = 8.587 \pm 0.004$	2011-151-75Ai, as-cast	THIS WORK
		$c = 3.387 \pm 0.004$ $a = 3.844 \pm 0.001$	26Ti-2Si-72A1 as-cast	This work
		$a = 3.344 \pm 0.001$ $c = 8.589 \pm 0.003$	2011-251-72AI, as-cast	THIS WORK
		$a = 3.833 \pm 0.002$	26Ti-5Si-69Al as-cast	This work
		$c = 8592 \pm 0.002$	2011 501 69711, us cust	THIS WORK
		$a = 3.822 \pm 0.001$	26Ti-8Si-66Al, as-cast	This work
		$c = 8.579 \pm 0.004$,,	
		$a = 3.813 \pm 0.001$	26Ti-10Si-64Al, as-cast	This work
		$c = 8.584 \pm 0.003$		
		$a = 3.801 \pm 0.001$	26Ti-17Si-57Al, as-cast	This work
		$c = 8.564 \pm 0.003$		
		$a = 3.804 \pm 0.002$	26Ti-20Si-54Al, as-cast	This work
		$c = 8.581 \pm 0.009$		
		$a = 3.839 \pm 0.002$	25Ti-3Si-72Al, as-cast	This work
		$c = 8.598 \pm 0.004$		
		$a = 3.819 \pm 0.001$	25Ti-9Si-66Al, as-cast	This work
		$c = 8.586 \pm 0.002$		
		$a = 3.801 \pm 0.002$	25Ti-15Si-60Al, as-cast	This work
		$c = 8.577 \pm 0.007$		
		$a = 3.808 \pm 0.001$	25Ti-16Si-59Al, as-cast	This work
		$c = 8.578 \pm 0.003$		
		$a = 3.844 \pm 0.001$	24Ti-1Si-75Al, as-cast	This work
		$c = 8.598 \pm 0.003$		
		$a = 3.828 \pm 0.001$	2311-581-72Al, as-cast	This work
		$c = 8.595 \pm 0.002$	207. 20. 20.1	TT1 ' 1
		$a = 3.842 \pm 0.001$ $a = 8.605 \pm 0.002$	2011-251-78AI, as-cast	This work
		$c = 8.005 \pm 0.005$ $c = 3.831 \pm 0.002$	17T; 5S; 78A1 as cost	This work
		$a = 3.851 \pm 0.002$ $c = 8.596 \pm 0.003$	1/11-351-78AI, as-cast	THIS WOLK
		$c = 3.390 \pm 0.003$ $a = 3.814 \pm 0.004$	5Ti-5Si-90Al as-cast	This work
		$a = 3.814 \pm 0.004$ $c = 8.596 \pm 0.003$	511-551-70Ai, as-cast	THIS WORK
7 Ti Si	Mn Si hP16-P6 /mcm	a = 7.465 c = 5.162		[1961Mir]
2, 113013	11113013, in 10 1 03/11011	a = 7.429, c = 5.139		[1985Vil]
		a = 7.431(6), c = 5.135(5)		[1970Sve]
		a = 7.4565, c = 5.1495		[1997Zav]
		$a = 7.456 \pm 0.002$	62.5Ti-37.5Si, as-cast	[1997Bul]
		$c = 5.157 \pm 0.002$		-
		$a = 7.466 \pm 0.006$	86.5Ti-13.5Si, 1250 °C	[1997Bul]
		$c = 5.16 \pm 0.01$		-
		a = 7.462, c = 5.150	80Ti-20Si, 1300 °C	[1999Tre]
				(continued)

 Table 5
 The Crystal Structure of Ti-Si-Al Phases (continued)

Phase	Crystal Structure	Lattice Periods, Å	Remarks	Refs.
		$a = 7.469 \pm 0.007$	60Ti-36Si-4Al, as-cast	This work
		$c = 5.170 \pm 0.008$		
		$a = 7.474 \pm 0.001$	56Ti-34Si-10Al, as-cast	This work
		$c = 5.169 \pm 0.001$		
		$a = 7.478 \pm 0.002$	56Ti-38Si-6Al, as-cast	This work
		$c = 5.179 \pm 0.002$		
		$a = 7.468 \pm 0.002$	56Ti-38Si-6Al, 1400 °C	This work
		$c = 5.168 \pm 0.002$		
		$a = 7.461 \pm 0.002$	56Ti-38Si-6Al, 1250 °C	This work
		$c = 5.162 \pm 0.002$		
		$a = 7.452 \pm 0.002$	5611-3881-6Al, 1400 °C + 1250 °C	This work
		$c = 5.160 \pm 0.002$	TOTT: 2001 20 41	
		$a = 7.4/1 \pm 0.004$	5011-3081-20AI, as-cast	This work
		$c = 5.1/8 \pm 0.004$	44T: 2S: 54A1 as post	This most
		$a = 7.450 \pm 0.003$	4411-251-34A1, as-cast	THIS WORK
		$c = 5.208 \pm 0.008$ $c = 7.472 \pm 0.002$	40T; 26S; 22A1 as goot	This work
		$a = 7.472 \pm 0.002$ $c = 5.165 \pm 0.002$	4211-2051-52AI, as-cast	THIS WORK
		$c = 5.105 \pm 0.002$ $c = 7.517 \pm 0.004$	41Ti 5Si 54A1 as cast	This work
		$a = 7.517 \pm 0.004$ $c = 5.202 \pm 0.004$	4111-331-34AI, as-cast	THIS WORK
		$a = 7.471 \pm 0.004$	40Ti-20Si-40A1 as-cast	This work
		$c = 5.168 \pm 0.004$	torr 2001 torri, us cust	This work
		$a = 7.465 \pm 0.004$	37Ti-23Si-40Al as-cast	This work
		$c = 5.170 \pm 0.004$		
		$a = 7.452 \pm 0.007$	35Ti-5Si-60Al, as-cast	This work
		$c = 5.148 \pm 0.008$		
		$a = 7.450 \pm 0.005$	35Ti-5Si-60Al, 1270 °C	This work
		$c = 5.152 \pm 0.007$		
		$a = 7.460 \pm 0.008$	33.5Ti-3.5Si-63Al, as-cast	This work
		$c = 5.173 \pm 0.008$		
		$a = 7.46 \pm 0.01$	30Ti-10Si-60Al, as-cast	This work
		$c = 5.17 \pm 0.01$		
		$a = 7.48 \pm 0.01$	29Ti-5Si-66Al, as-cast	This work
		$c = 5.148 \pm 0.007$		
		$a = 7.451 \pm 0.007$	29Ti-5Si-66Al, 1270 °C	
		$c = 5.166 \pm 0.005$		
		$a = 7.45 \pm 0.01$	27.5Ti-3.5Si-69Al, as-cast	This work
		$c = 5.18 \pm 0.01$		
		$a = 7.458 \pm 0.005$	26Ti-5Si-69Al, as-cast	This work
0.5/4 0 57 0		$c = 5.159 \pm 0.005$		10(0) 10077 J
$\beta 5/4, \beta - T_{15}S_{14}$	Sm_5Ge_4 , oP36-Pnma	a = 6.506, b = 12.690,		[1969Nic, 1997Zav]
5/4 T. O.	7 0' (D2(D4 0 0	c = 6.645		110700 1
$\alpha 5/4, \alpha - 11_5 51_4$	Zr_5S1_4 , $tP36-P4_12_12$	a = 7.133, c = 12.977		[19/08ve]
		a = 6.702, c = 12.105	56T: 288: 6A1 1400 °C	[199/ZaV]
		$a = 0.723 \pm 0.007$ $a = 12.16 \pm 0.01$	5011-5851-0AI, 1400 °C	T IIIS WORK
		$c = 12.10 \pm 0.01$	56T; 38S; 6A1_1400 °C + 1250 °C	This work
		$a = 0.090 \pm 0.004$ $c = 12.12 \pm 0.01$	5011-5651-0AI, 1400 C + 1250 C	THIS WORK
		$a = 6709 \pm 0.006$	56Ti-38Si-641 1250 °C	This work
		$c = 12.15 \pm 0.01$	5011 5051 0/11, 1250 °C	THIS WORK
		$a = 6.706 \pm 0.002$	50Ti-44Si-6Al, 1400 °C	This work
		$c = 12.180 \pm 0.007$		
		$a = 6.702 \pm 0.002$	50Ti-44Si-6Al, 1400 °C + 1090 °C	This work
		$c = 12.174 \pm 0.008$, -	-
		$a = 6.717 \pm 0.004$	50Ti-44Si-6Al, 1090 °C + 950 °C	This work
				(continued)
				(continueu)

 Table 5
 The Crystal Structure of Ti-Si-Al Phases (continued)

Section I: Basic and Applied Research

Table 5	The C	rystal S	Structure	of Ti-	-Si-Al	Phases	(continued)
---------	-------	----------	-----------	--------	--------	--------	-------------

Phase	Crystal Structure	Lattice Periods, Å	Remarks	Refs.
		$c = 12.19 \pm 0.01$		
		$a = 6.702 \pm 0.007$	33Ti-27Si-40Al, as-cast	This work
		$c = 12.20 \pm 0.01$		
		$a = 6.707 \pm 0.004$	32Ti-20Si-48Al, as-cast	This work
		$c = 12.138 \pm 0.008$		
		$a = 6.703 \pm 0.005$	30Ti-22Si-48Al, as-cast	This work
		$c = 12.19 \pm 0.01$		
		$a = 6.709 \pm 0.003$	29Ti-17Si-54Al, as-cast	This work
		$c = 12.162 \pm 0.006$		
		$a = 6.695 \pm 0.005$	27Ti-25Si-48Al, as-cast	This work
		$c = 12.19 \pm 0.01$		
		$a = 6.699 \pm 0.004$	26Ti-14Si-60Al, as-cast	This work
		$c = 12.23 \pm 0.01$		
		$a = 6.693 \pm 0.006$	26Ti-17Si-57Al, as-cast	This work
		$c = 12.21 \pm 0.01$		
		$a = 6.709 \pm 0.007$	26Ti-20Si-54Al, as-cast	This work
		$c = 12.19 \pm 0.01$		
		$a = 6.697 \pm 0.005$	25Ti-15Si-60Al, as-cast	This work
		$c = 12.19 \pm 0.01$		
β1/1, β-TiSi	FeB, oP8-Pnma	a = 6.551, b = 3.633(3),		[1970Sve]
		c = 4.983(5)		
		a = 6.5381, b = 3.6390,		[1997Zav]
		c = 5.0010		
		$a = 6.606 \pm 0.009$	33Ti-47Si-20Al, as-cast	This work
		$b = 3.619 \pm 0.005$		
		$c = 5.00/\pm 0.009$		
		$a = 6.5 / \pm 0.01$	3311-3/S1-30AI, as-cast	This work
		$b = 3.628 \pm 0.005$		
		$c = 5.01 \pm 0.01$	21T: 208: 2041 as asst	This work
		$a = 0.30 \pm 0.01$ $b = 2.622 \pm 0.002$	5111-5951-50AI, as-cast	THIS WORK
		$B = 5.032 \pm 0.008$		
		$c = 5.00 \pm 0.01$ $c = 6.502 \pm 0.007$	20T; 21S; 40A1 as asst	This work
		$a = 0.592 \pm 0.007$ $b = 2.626 \pm 0.002$	2911-5151-40Ai, as-cast	THIS WORK
		$c = 4.980 \pm 0.003$		
$\alpha 1/1 \alpha$ -TiSi	Orthorhombic	$c = 4.980 \pm 0.004$ a = 18.747 $b = 7.081$		[10077 _{9v}]
ui/1, u-1151	Orthomote	c = 3596		
$B1/2$ $B_{-}TiSi$	7rSi oC12-Cmcm	a = 3.62 h = 13.76 c = 3.60		[1001Che]
$\alpha 1/2$, α -TiSi ₂	TiSi, oF24-Fddd	a = 8.236 $b = 4.773$		[1939Lav_Mas2]
an2, a mon ₂	11012, 01 2 1 1 444	c = 8523		[1999]Eut, 11102]
		a = 8.257(7), b = 4.802(4)		[1970Sve]
		c = 8.557(7)		[[],]
		a = 8.254, b = 4.783, c = 8.523		[1973Bon]
		a = 8.253, b = 4.783, c = 8.540		[1986Mur, 1991Che]
		a = 8.25, b = 4.78, c = 8.50		[1995Jin]
		a = 8.265, b = 4.789, c = 8.549		[1997Zav]
TiSi _{1.7-1.4} Al _{0.3-0.6}	ZrSi ₂ oc12, Cmcm		1250 °C	[1957Now, 1962Sch]
$\operatorname{Ti}(\operatorname{Al}_x\operatorname{Si}_{1-x})_2$	$ZrSi_2$, oc12, Cmcm	a = 3.590-3.618, b = 13.517, c = 3.520-3.618	1200 °C	[1961Bru]
O. TiaAlSia	ZrSi ₂ , oc12, Cmcm	a = 3.635, b = 14.19, c = 3.613	25Ti-7Al-68Si, 700 °C (O + 30Si + 10Al)	[1965Ram]
- ,23	ZrSi ₂ , tc12, Cmcm	a = 3.60, b = 13.53, c = 3.60	31Ti-19Al-50Si, 1100 °C (single-phase)	[1965Ram]
U, Ti7AlsSi12	$Zr_{1-r}AlSi_{1-r}$, t.24. I4./amd	a = 3.576, c = 27.15	27Ti-20Al-53Si, 700 °C (U + 5Si + 5Al)	[1965Ram, 1963Sch]
/ 3~-12	$1-x = 1+x^{2} = -2, -2, -1, -1, -1$	a = 3.645, c, = 28.65	$25\text{Ti-7Al-68Si}, 1100 ^{\circ}\text{C} (\text{U} + 20\text{Si} + ?)$]1965Ram]
TiAlSia				[1968Kam]
Ti ₂ Al ₃ Si ₂				[1988Zak]
				(continued)
				(continued)

Ti(Si,Al)₂ to peritectic L + β -Ti(Si,Al)₂ $\leftrightarrow \beta$ 1/1). The last comes into invariant point U₉. We did not have any sample within the field of the primary crystallization of β 1/1 phase, so our results are insufficient to determine exact location of the curve p₃U₈.

The shape of the last two monovariant curves indicates that the invariant equilibrium $L + \alpha 5/4 + \beta 1/1 + \beta$ -Ti(Si,Al)₂ might occur in this concentration interval, rather than the equilibria proposed. In this case, the three-phase field $\alpha 5/4 + \beta 1/1 + \beta$ -Ti(Si,Al)₂ should exist at the solidus temperature. Then, $\beta 1/1$ cannot coexist with the ε -phase, as was observed experimentally (see above). The solidus temperature corresponding to the three-phase field $\alpha 5/4 + \beta 1/1$ + ε was determined to be 1105 °C. Thus, this is the temperature of the invariant equilibrium $L + \alpha 5/4 \leftrightarrow \beta 1/1 + \varepsilon$ (invariant point U₈).

The solidus temperature of the three-phase field $\beta 1/1 + \varepsilon$ + β -Ti(Si,Al)₂ was determined to be 1016 °C, corresponding to the invariant equilibrium L + $\beta 1/1 \leftrightarrow \beta$ -Ti(Si,Al)₂ + ε (invariant point U₉).

As can be seen from Table 4, there are few additional sets of temperatures observed for a number of alloys that should be attributed to other invariant equilibria (at 601 ± 5 °C and 580 ± 5 °C). These are related to equilibria in the Al-corner of the system as composition of the remnant liquid phase moves toward this direction for solidification of the alloys. It should be noted that the temperature 580 °C is close to the temperature of the binary eutectic L \leftrightarrow Al + Si (577 °C) and

Table 5	The Crystal	Structure	of Ti-Si-Al	Phases ((continued)
---------	-------------	-----------	-------------	----------	-------------

Phase	Crystal Structure	Lattice Periods, Å	Remarks	Refs.
$\beta 1/2$ or TC	ZrSi ₂ , oc12, Cmcm	$a = 3.616 \pm 0.002$	33Ti-37Si-30Al, as-cast	This work
		$b = 13.49 \pm 0.01$		
		$c = 3.604 \pm 0.008$		
		$a = 3.598 \pm 0.004$	33Ti-47Si-20Al, as-cast	This work
		$b = 13.54 \pm 0.01$		
		$c = 3.506 \pm 0.007$		
		$a = 3.616 \pm 0.006$	31Ti-39Si-30Al, as-cast	This work
		$b = 13.30 \pm 0.02$		
		$c = 3.559 \pm 0.008$		
		$a = 3.594 \pm 0.002$	29Ti-31Si-40Al, as-cast	This work
		$b = 13.611 \pm 0.006$		
		$c = 3.416 \pm 0.007$		

Fig. 7 Partial isothermal sections at 1270 °C (a) and 1250 °C (b) of the Ti-Si-Al system in the α -Ti-TiAl₃-TiSi field: (\mathbb{O}) two-phase sample; (\mathbb{O}) three-phase sample; and (\triangle) EPMA results

Fig. 8 Reaction scheme in the Ti-Si-Al system according to the results of this work: (a) T > 1390 °C; (b) 1100 °C < T < 1390 °C

Fig. 8 cont. Reaction scheme in the Ti-Si-Al system according to the results of this work: (c) T < 1100 °C

seems to correspond to the invariant equilibrium $L + \varepsilon \leftrightarrow Si$ + Al (invariant point U₁₁). The temperature 601 °C then corresponds to the equilibrium $L + TC \leftrightarrow \varepsilon + Si$ (invariant point U₁₀). So, the solidification process seems to finish with crystallization of the above binary eutectic, passing via invariant peritectic processes at 601 °C and 580 °C. This conclusion is quite compatible with the results of Zakharov et al. [1988Zak], although this is inconsistent with the conclusion of the study by Kamei et al. [1968Kam], in which the ternary eutectic is reported to be near the binary eutectic Al + Si.

The broad concentration regions on the Al-Si side of the system was not specially studied by us except for a very few Al-rich alloys. Nevertheless, the above results allow the reasonable estimate shown in the Fig. 3. This region needs additional thorough examination.

Thus, the character and coordinates of invariant fourphase equilibria with the participation of the liquid in the Ti-Si-Al system can be summarized as follows:

U_1 :	$L + Z + \alpha 5/4 + \beta 5/4$	~51Ti-47Si-2Al,
		temperature unknown;
U ₂ :	$L + \beta \leftrightarrow \alpha + Z$	~49Ti-4Si-47Al, 1420 °C
		[1997Bul];
E:	$L \leftrightarrow \alpha + \gamma + Z$	~48Ti-4Si-48Al, 1415 °C
		[1997Bul];
U ₃ :	$L + \beta 1/2 \leftrightarrow \beta 1/1 + TC$	composition and
		temperature unknown;
U_4 :	$L + \gamma \leftrightarrow \xi + Z$	~33Ti-6Si-61Al, 1390 °C;

U ₅ :	$L + \xi \leftrightarrow \varepsilon + Z$	~30Ti-6.5Si-63.5Al,
		1380 °C;
U_6 :	$L + Z \leftrightarrow \varepsilon + \alpha 5/4$	~21Ti-37Si-42Al, 1356 °C;
U_7 :	$L + \beta 1/2 \leftrightarrow TC + Si$	composition and tempera-
		ture unknown;
U_8 :	$L + \alpha 5/4 \leftrightarrow \varepsilon + \beta 1/1$	composition unknown,
		1105 °C;
U9:	$L + \beta 1/1 \leftrightarrow \epsilon + TC$	composition unknown,
		1016 °C;
U ₁₀ :	$L + TC \leftrightarrow \varepsilon + Si$	composition unknown,
		601 °C;
U ₁₁ :	$L + \varepsilon \leftrightarrow Si + Al$	composition unknown,
		580 °C.

Some non-interpreted temperatures are shown in the isopleths (Fig. 4-6). Most of them, however, result from the as-cast and, thus, nonequilibrium state of the samples. The thermal effects at 940 °C and 860 °C (Fig. 6) were ascribed to $\alpha 1/1 \leftrightarrow \beta 1/1$ -transformation.

Partial isothermal sections of the Ti-Si-Al system at 1270°C and 1250°C are shown in Fig. 7. Isothermal sections in the region α -Ti-TiAl₃-Ti₅Si₄ are similar to the solidus surface, and in the concentration region studied are characterized by three-phase triangles $Z + \gamma + \xi$, $Z + \xi + \varepsilon$, and $Z + \varepsilon + \alpha 5/4$. Compositions of Z and 5/4 phases of the region $Z + \varepsilon + 5/4$ at the temperature 1250 °C coincide with those at the solidus temperature (1356 °C). The ε -composition slowly shifts toward a lower Si concentration as the temperature decreases.

The lattice parameters of the Ti-Si-Al phases are sum-

marized in Table 5. The partial of reaction scheme resulting from this investigation is shown in Fig. 8.

4. Conclusions

Phase equilibria in the α -Ti-Al-Si region of the Ti-Si-Al system were studied by the methods of DTA, XRD, metallography, and EPMA. Results are given as a solidus projection, a melting diagram (solidus + liquidus), partial isothermal sections at 1270 °C and 1250 °C, three isopleths (at 5 at.% Si, 40 at.% Al, and 50 at.% Ti), and a reaction scheme. Experimental results are insufficient to make a decision concerning the existence of a TC reported in the vicinity of Ti disilicide. Two variants of equilibria are probable, either the coexistence of the TC with TiSi2 or the existence of the TiSi2 with a wide homogeneity range for the high-temperature modification. The equilibria at the solidus temperatures are characterized by an existence of the following three-phase fields: $Ti_5Si_3 + \alpha - Ti_5Si_4 + \alpha$ β-Ti₅Si₄ (1356 < t < ~1815 °C); γ + ξ + Ti₅Si₃ (1390 °C); ξ + ε + Ti₅Si₃ (1380 °C); ε + Ti₅Si₃ + α-Ti₅Si₄ (1356 °C); $\varepsilon + \alpha$ -Ti₅Si₄ + β -TiSi (1105 °C); $\varepsilon + \beta$ -TiSi + β -Ti(Si,Al)₂ (1016 °C); $\varepsilon + \beta$ -Ti(Si,Al)₂ + Si (601 °C); and ε + Si + Al (580 °C). In the case of the existence of the TC, two additional three-phase regions should be present: β -TiSi + β -TiSi₂ + TC; and β -TiSi₂ + TC + Si. The above fields result from the following invariant equilibria: $L + Ti_5Si_3 +$ α -Ti₅Si₄ + β -Ti₅Si₄ (invariant point U₁: ~51Ti-47Si-2Al); L + $\gamma \leftrightarrow \xi$ + Ti₅Si₃ (invariant point U₄: ~33.5Ti-6.5Si-60Al); $L + \xi \leftrightarrow \varepsilon + Ti_5Si_3$ (invariant point U₅: ~30Ti-6Si-64Al); L + Ti₅Si₃ $\leftrightarrow \varepsilon$ + α -Ti₅Si₄ (invariant point U₆: ~21Ti-37Si-42Al); L + α -Ti₅Si₄ $\leftrightarrow \epsilon$ + β -TiSi (invariant point U₈: ~23Ti-41Si-36Al); L + β -TiSi $\leftrightarrow \epsilon$ + β -Ti(Si,Al)₂ (invariant point U₉: ~23Ti-43Si-34Al); L + β -Ti(Si,Al)₂ $\leftrightarrow \varepsilon$ + Si (invariant point U_{10}); and $L + \varepsilon \leftrightarrow + Si + Al$ (invariant point U_{11}). In the case of the existence of the TC compound, additional invariant equilibria L + β -TiSi₂ $\leftrightarrow \beta$ -TiSi + TC (invariant point U₃) and L + β -TiSi₂ \leftrightarrow TC + Si (invariant point U_7) take place.

References

- **1939Lav:** F. Laves and H.J. Walbaum: "Crystal Structure of Ni₃Ti and Si₂Ti: Two New Types," *Z. Kristallogr.*, 1939, *101*, pp. 78-93 (in German).
- **1956Cot:** P.G. Cotter, J.A. Kohn, and R.A. Potter: "Physical and X-Ray Study of the Disilicides of Titanium, Zirconium and Hafnium," *J. Am. Ceram. Soc.*, 1956, *39*(N1), pp. 11-12.
- **1957Now:** H. Nowotny and H. Huschka: "Studies of the Partial Systems Al-TiSi₂, Al-ZrSi₂, Al-WSi₂," *Monatsh. Chem.*, 1957, 88, pp. 494-501.
- 1961Bru: C. Brukl, H. Nowotny, O. Schob, and F. Benesovsky:
 "Die Kristallstrukturen von TiSi, Ti(Al,Si)₂ und Mo(Al,Si)₂," *Monatsh. Chem.*, 1961, 92, pp. 781-88.
- 1961Mir: L.I. Mirkin: Handbook on X-Ray Structural Analysis of Polycrystals. Fizmatgiz, Moscow, Russia, 1961 (in Russian).
- **1962Sch:** O. Schob, H. Nowotny, and F. Benesovsky: "Die Dreistoffe (Titan, Zirkonium, Hafnium)–Aluminium–Siliziu," *Planseeber. Pulvermet.*, 1962, *10*, pp. 65-71.

- **1963Sch:** K. Schubert, K. Frank, R. Gohle, A. Maldonado: "Einige Strukturdaten Metallischer Phasen (8)," *Naturwissen*, 1963, *50*(2), p. 41.
- 1965Ram: A. Raman and K. Schubert: "Über den Ausban Einiger zu TiAl₃ Verwandter Legierungsreinen: II. Untersuchungen in Einigen Ti-Al-Si- und T^{4...6}-In System," Z. Metallkd., 1965, 56, pp. 44-52.
- 1968Kam: K. Kamei, T. Ninomiya, and S. Hayashi: "The Phase Diagram of the Al-Si-Ti Equilibrium System," *Met. Abstrs. Light Metals Alloys*, 1964-1966, 1968, 3, pp. 67-70; *Phase Diagrams of Metal Systems*, Vol. 14, VINITI, Moscow, Russia, 1970, pp. 121-22 (in Russian).
- **1969Nic:** J.J. Nickl and H. Sprenger: "Über Neue Phasen im Ternären System Titan Kupfer Silizium," Z. Metallkd., 1969, 60, pp. 136-39.
- **1970Sve:** V.N. Svechnikov, Yu.A. Kocherzinsky, L.M. Yupko, O.G. Kulik, and Ye.A. Shyshkin: "Phase Diagram of the Titanium-Silicon System," *Dokl. AN SSSR*, 1970, *193*, pp. 393-96 (in Russian).
- 1973Bon: V.P. Bondarenko, L.A. Dvorina, V.I. Zmij, Ye.N. Fomichev, N.P. Slyusar, and A.D. Krivorotenko: "Enthalpy and Heat Capacity of Titanium and Vanadium Disilicides at Above 1200 °K," *Poroshkovaya Metallurgiya*, 1973, *11*, pp. 47-49 (in Russian).
- **1983Rog:** P. Rogl: Titanium: *Physico-Chemical Properties of Its Compounds and Alloys.* IAEA, Vienna, Austria, 1983.
- **1984Ory:** S.B. Orynbekov, U.M. Makanov, L.S. Guzej, and Ye.M. Sokolovskaya: "Interaction of Silicon and Titanium With Aluminum," *Vestnik MGU/Chimiya*, 1984, *25*(5), pp. 500-03 (in Russian).
- **1985Vil:** C.P. Villars and L.D. Calvert: *Pearsons Handbook of Crystallographic Data for Intermetallic Phases*, ASM International, Materials Park, OH, 1985.
- **1986Mur:** J.L. Murrey: "Calculation of the Titanium-Aluminum Phase Diagram," *Met. Trans.*, 1988, *19A*(2), pp. 243-47.
- **1988Zak:** A.M. Zakharov, I.T. Gul'din, A.A. Arnol'd, and Yu.A. Matsenko: "Phase Equilibria in the Al-Si-Ti System in the Concentration Interval 10-14% Si and 0-0.6% Ti," *Izv. AN SSSR. Metally.*, 1988, (4), pp. 181-86 (in Russian).
- **1990Sch:** J.C. Schuster and H. Ipser: "Phases and Phase Equilibria in the Partial System TiAl₃-TiAl," *Z. Metallkd.*, 1990, *81*, pp. 383-86.
- **1990Sti:** S. Stilz and A. Prince: "Al-Be-Ti" in *Ternary Alloys: A Comprehensive Compendium of Evaluated Constitutional Data and Phase Diagrams*, G. Petzow and G. Effenberg, ed., Vol. III, VCH, Weinheim, Germany, 1990, pp. 374-85.
- **1991Che:** L.J. Chen and K.N. Tu: "Epitaxial Growth of Transition-Metal Silicides on Silicon," *Mater. Sci. Rep.*, 1991, 6(2/3), pp. 53-140.
- **1993Per:** P. Perrot: "Al-Si-Ti" in *Ternary Alloys: A Comprehensive Compendium of Evaluated Constitutional Data and Phase Diagrams*, G. Petzow and G. Effenberg, ed., Vol. VIII, VCH, Weinheim, Germany, 1993, pp. 283-90.
- **1995Bra:** J. Braun, M. Ellner, and B. Predel: "Experimentelle Untersuchungen zur Struktur und Stabilität der Phase TiAl," *Z. Metallkd.*, 1995, *86*, pp. 870-76.
- 1995Jin: S. Jin, M. Aindow, Z. Zhang, and L.J. Chen: "Formation and Microstructural Development of TiSi₂ in (111) Si by Ti Ion Implantation and Annealing at 950 °C," J. Mater. Res., 1995, 10(4), pp. 891-99.

- **1996Sei:** H.J. Seifert, H.L. Lukas, and G. Petzow: Thermodynamic Optimization of the Ti-Si System," *Z. Metallkd.*, 1996, *87*, pp. 2-13.
- **1996Tre:** L.A. Tretyachenko. "On the Ti-Al System" in *Red Book*, Vol. 41, Part 1, 1996, p. 91.
- **1997Bul:** M. Bulanova, L. Tretyachenko, and M. Golovkova: "Phase Equilibria in the Ti-Rich Corner of the Ti-Si-Al System," *Z. Metallkd.*, 1997, 88, pp. 256-65.
- **1997Zav:** V.V. Zavodyanny, V.Ya. Markiv, N.M. Belyavina, and V.A. Makara: "Phase Equilibria in the Ti-Si-Ga System at 800 °C," *Dop. NAN Ukrainy*, 1997, *10*, pp. 117-21 (in Ukrainian)
- **1999Tre:** L.A. Tretyachenko, N.V. Antonova, P.S. Martsenyuk, and T.Ya. Velikanova: "Phase Equilibria in the Ti-Rich Corner of the Ti-Si-Ga System," *J. Phase Equilibria*, 199, *20*, pp. 581-92.